Coeur d'Alene Lake Conceptual Site Model for Structure and Mixing

Idaho Department of Environmental Quality Senior Limnologist, Coeur d'Alene Lake Management CDA Basin Environmental Improvement Project Commission May 2025

Project Background

2019 EPA Optimization Team Needs

- Include Lake in a CdA Basin CSM
- No recent Lake CSM published
- Describe metals biogeochemsitry
- Hydrodynamic mass balance

Optimization Review Report Remedial Process Optimization Study

Lake Coeur d'Alene Bunker Hill Mining and Metallurgical Site Operable Unit 03 Coeur d'Alene, Kootenai County, Idaho

EPA Region 10

1st Step – better description of lake physics

- What factors influence lake hydrodynamics?
- What hydrodynamics do we need to describe?
- Incorporate historic data, modeling work
- Hydrodynamics foundation for ecology, chemistry

Project Highlights

Document key data from core sites

- Lake sonde, wind data from 2014-2019
- Basin hydrology from 2005-2020
- Stable isotope study from 2015 (¹⁸O, ²H)
- Summary of modeling studies

Document evaluates lake structure, mixing

- Lake seasonality
- River hydrology, wind patterns
- Internal mixing
- Importance of geography, bathymetry, seasonality on lake processes, sediment influences

Analysis and Development of an Updated Conceptual Site Model for Coeur d'Alene Lake Structure and Mixing

May 2025

What Physics Do We Need to Know?

- Seasonality
 - When processes occur
- River Hydrology
 - Timing, magnitude of flows
- Lake Currents
 - Where the water goes
- Internal Mixing
 - How isolated are the sediments?
- Influences of Bathymetry

Structural Perspective: Two Different Lake Types

- Northern Lake
 - Deeper (> 100 ft deep)
 - Colder, more oligotrophic
 - Larger volume
 - Less sediment influence
 - 2 orientations (NW/SE, NE/SW)
- Southern Lake
 - Shallower (< 60 ft deep)
 - Warmer, more mesotrophic
 - Smaller volume
 - More sediment influence
 - N-NW/S-SE orientation

Geography and General Spring Currents

• Primarily South \rightarrow North

- Very short residence time in Southern Pool (a few weeks)
- Some southward flows from CDA River
- Don't get full mixing until further north
- Preferential flow towards outlet

Evidence for over-topping in early spring

interflows, underflows also occur

Key Aspects of River Hydrology

NW towards Tubbs Hill

Spring flood event (May, 2008)

CDA River runoff is "flashier"

CDA River mouth, looking East

Hydrology Drives the Lake's Seasonality

- 5 "lake seasons" (balance of residence time, river flows, weather)
- Median residence time: ~ 90 days (Spring) to 1,100 days (Summer)
- Lake can empty and refill each spring

Knowing the Seasons Unlocks a Lot!

Unlock hidden patterns in the rivers

 Take CdA River flows Map Climate Cycles
Break out patterns of onto trends 5 equal seasons

 El Nino ~ lower Subtract seasons, flows calculate a trend using
theolohigatermigheenian

Remainder is random variability

Hidden Trends in Coeur d'Alene River Flows

Water Movement in Spring

Modeled age of water in the lake

- Blue = recently entered
- Yellow = entered ~5 mo ago

over-topping in early spring more equal by late spring

Water Movement in Summer

Modeled age of water in the lake

- Yellow = entered ~5 mo ago (~March)
- Red = entered ~7 mo ago (~January)

minimal river influence

Wind and Summer Currents

Winds creates currents, mixing

- Currents move in weird ways
- Can cause differential water cooling
- Substantial mixing in the lake
- Both spatially and vertically

Wind

Daily patterns

- shifting direction
- variable speed

Daily patterns

- consistent direction
- variable speed

Seasonal differences in wind patterns

Mixing on a Windy Summer Day (Modeled Lake Currents)

Note different color scales

Does Vertical Mixing Occur?

Two ways to test

- 1. Measure currents directly
- 2. Look for signs of mixing in the water

To Look for Signs in the Water

- Fingerprint water in the lake and rivers
- Measure different types of O, H atoms
- O and H have a small proportion of heavier "isotopes" that have more neutrons.
- Isotopes react at different rates
 - Water sources have "fingerprints"
 - Evaporation, precipitation change the ratios in known ways
- Can trace water masses and how they change by measuring relative amounts

Lake Mixing: Data from Stable Isotopes $(\partial^2 H, \partial^{18} O)$

Surface Waters

Deeper Waters (> 20 m depth)

Some Implications for Lake Management

Lake Composition

- Dominated by rivers. "Reset" each spring
- Lots of variability (annual, seasonal)
- Sensitive to changes in watershed
- Sensitive to El Niño / La Niña cycles

Internal Mixing

- Mixing across thermocline in summer
- More susceptible to influences of metals released from sediments?
- Effectiveness of Recovery Actions
 - Different in lake's north, south
 - More sediment influence on the lake in the south (shallower)

Thank you

The Concept of Five Seasons is Consistent with CDA Tribal Knowledge

Mixing Patterns (2008 Floods)

Managing Sediment Contamination

- Want the metal contaminants locked in sediments, *if*
 - Lake's bottom waters have high pH, O₂
 - Geochemistry works as a "cap"
- Keep metals in sediments
- CDA River clean-up reduces metals supply to the lake
- Want to keep nutrients low to keep algae low.
- If lake productivity goes up, then pH, O₂ get lower

